Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 2): 129918, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309388

RESUMO

This study examined four types of japonica rice from Yangtze River Delta, categorized based on amylose content (AC) and protein content (PC): high AC with high PC, high AC with low PC, low AC with high PC, and low AC with low PC. It systematically explored the effect of starch, protein and their interactions on eating quality of japonica rice. Rheological analysis revealed that increased amylose, long chains amylopectin or protein levels during cooking strengthen starch-protein interactions (hydrogen bonding), forming a firm gel network. Scanning electron microscopy showed that increased amylose, long chains amylopectin or protein levels made protein and starch more stable in combination during cooking, limiting starch structure cleavage. Therefore, the eating quality of high AC in similar PC japonica rice and high PC in similar AC japonica rice were poor. Further, correlation and random-forest analysis (RFA) identified amylose as the most influential factor in starch-protein interactions affecting rice eating quality, followed by amylopectin and protein. RFA also revealed that in high AC japonica rice, the interactions of Fb3 and albumin with amylose were more conducive to forming good eating quality. In low AC japonica rice, the interactions of Fb2 and prolamin with amylose were more beneficial.


Assuntos
Oryza , Amido , Amido/química , Amilopectina/química , Amilose/química , Oryza/química , Rios
2.
Small Methods ; : e2301356, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195885

RESUMO

The ability to perform both electrochemical and structural/elemental characterization in the same experiment and at the nanoscale allows to directly link electrochemical performance to the material properties and their evolution over time and operating conditions. Such experiments can be important for the further development of solid oxide cells, solid-state batteries, thermal electrical devices, and other solid-state electrochemical devices. The experimental requirements for conducting solid-state electrochemical TEM experiments in general, including sample preparation, electrochemical measurements, failure factors, and possibilities for optimization, are presented and discussed. Particularly, the methodology of performing reliable electrochemical impedance spectroscopy measurements in reactive gases and at elevated temperatures for both single materials and solid oxide cells is described. The presented results include impedance measurements of electronic conductors, an ionic conductor, and a mixed ionic and electronic conductor, all materials typically applied in solid oxide fuel and electrolysis cells. It is shown that how TEM and impedance spectroscopy can be synergically integrated to measure the transport and surface exchange properties of materials with nanoscale dimensions and to visualize their structural and elemental evolution via TEM/STEM imaging and spectroscopy.

3.
Microsc Res Tech ; 86(8): 1003-1011, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37337939

RESUMO

Establishing a stable and well conducting contacting material is critical for operando electron microscopy experiments of electrical and electrochemical devices at elevated temperatures. In this contribution, the nanostructure and electrical conductivity of ion beam deposited Pt are investigated both in vacuum and in oxygen as a function of temperature. Its microstructure is relatively stable up to a temperature of approx. 800°C and up to an applied current density of approx. 100 kA/cm2 . Its conductivity increases with temperature, attributed to densification, with changes in the hydrocarbon matrix being less important. Recommendations are provided with respect to the Pt deposition parameters in terms of maximizing stability and minimizing electrical resistance. RESEARCH HIGHLIGHTS: It is feasible to use ion beam deposited Pt as electrical contacting material in operando electron microscopy. The deposited Pt is relatively stable up to 800°C and approx. 100 kA/cm2 . The resistivity can be reduced by increasing the applied ion current during deposition and by thermal annealing at a temperature of 500°C in a few mbar of oxygen.

4.
Small Methods ; 7(7): e2201713, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37035947

RESUMO

The concept of combining electrical impedance spectroscopy (EIS) with environmental transmission electron microscopy (ETEM) is demonstrated by testing a specially designed micro gadolinia-doped ceria (CGO) sample in reactive gasses (O2 and H2 /H2 O), at elevated temperatures (room temperature-800 °C) and with applied electrical potentials. The EIS-TEM method provides structural and compositional information with direct correlation to the electrochemical performance. It is demonstrated that reliable EIS measurements can be achieved in the TEM for a sample with nanoscale dimensions. Specifically, the ionic and electronic conductivity, the surface exchange resistivity, and the volume-specific chemical capacitance are in good agreement with results from more standardized electrochemical tests on macroscopic samples. CGO is chosen as a test material due to its relevance for solid oxide electrochemical reactions where its electrochemical performance depends on temperature and gas environment. As expected, the results show increased conductivity and lower surface exchange resistance in H2 /H2 O gas mixtures where the oxygen partial pressure is low compared to experiments in pure O2 . The developed EIS-TEM platform is an important tool in promoting the understanding of nanoscale processes for green energy technologies, e.g., solid oxide electrolysis/fuel cells, batteries, thermoelectric devices, etc.

5.
Phys Chem Chem Phys ; 25(4): 3457-3471, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36637049

RESUMO

CO2 reduction in Solid Oxide Electrolysis Cells (SOECs) is a key-technology for the transition to a sustainable energy infrastructure and chemical industry. Ceria (CeO2) holds great promise in developing highly efficient, cost-effective and durable fuel electrodes, due to its promising electrocatalytic properties, and proven ability to suppress carbon deposition and to tolerate high concentrations of impurities. In the present work, we investigate the intrinsic electrocatalytic activity of ceria towards CO2 reduction by means of electrochemical impedance spectroscopy (EIS) on model systems with well-defined geometry, composition and surface area. Aiming at the optimization of the intrinsic catalytic properties of the material, we systematically study the effect of different dopants (Zr, Gd, Pr and Bi) on the reaction rate under varying operating conditions (temperature, gas composition and applied polarization) relevant for SOECs. The electrochemical measurements reveal the dominant role of the surface defect chemistry of the material in the reaction rate, with doping having only a mild effect on the rate and activation energy of the reaction. By analyzing the pO2 and overpotential dependence of the reaction rate with a general micro-kinetic model, we are able to identify the second electron transfer as the rate limiting step of the process, highlighting the dominant role of surface polarons in the energy landscape. These insights on the correlation between the surface defects and the electrocatalytic activity of ceria open new directions for the development of highly performing ceria-based technological electrodes.

6.
Chemistry ; 28(14): e202104288, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35041236

RESUMO

Developing robust oxygen evolution reaction (OER) electrocatalysts with excellent performance is essential for the conversion of renewable electricity to clean fuel. Herein, we present a facile concept for the synthesis of efficient high-entropy metal-organic frameworks (HEMOFs) as electrocatalysts in a one-step solvothermal synthesis. This strategy allows control of the microstructure and corresponding lattice distortion by tuning the metal ion composition. As a result, the OER activity was improved by optimizing the coordination environment of the metal catalytic center. The optimized Co-rich HEMOFs exhibited a low overpotential of 310 mV at a current density of 10 mA cm-2 , better than a RuO2 catalyst tested under the same conditions. The finding of lattice distortion of the HEMOFs provides a new strategy for developing high-performance electrocatalysts for energy conversion.

7.
J Sci Food Agric ; 102(9): 3712-3723, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34893992

RESUMO

BACKGROUND: Semi-glutinous japonica rice (SGJR) is increasingly a popular choice for rice consumption and more commonly cultivated in the middle and lower reaches of the Yangtze River in China. Here, 58 SGJR and 75 non-semi-glutinous japonica rice (NSGJR) cultivars were evaluated for their characteristics of grain quality by assessing the taste of cooked grains, flour/paste properties, chemical compositions and starch physicochemical properties. RESULTS: Comparisons of factors related to taste showed that cooked rice characteristics of SGJR were better in appearance, lower in hardness, lower in springiness and higher in stickiness. There were no significant differences in contents of total starch and total protein between the two types of rice. Further analysis indicates that thinner lamellar thickness, smaller starch particle size, and higher contents of amylopectin and albumin of SGJR (resulting in higher weights of dried matter from rice slurries) contributed to better appearance of cooked SGJR. Lower contents of amylose and prolamin led to a weaker and less elastic gel network in rice paste samples and contributed to a stronger moisture migration capability of cooked SGJR that showed higher stickiness and lower hardness and springiness. CONCLUSION: A SGJR line with low apparent amylose content does not indicate good taste. Physicochemical properties of starch and protein contributed to better appearance, higher stickiness and lower hardness and springiness of cooked SGJR. These findings provide empirical data to help breed better-tasting cultivars of japonica rice. © 2021 Society of Chemical Industry.


Assuntos
Oryza , Amilose/química , Oryza/química , Melhoramento Vegetal , Rios , Amido/química
8.
Foods ; 10(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34829057

RESUMO

Differences in cooked rice and starch and protein physicochemical properties of three japonica rice were compared systematically. Cultivars of japonica rice, Daohuaxiang2, from Northeast China (NR) and two semiglutinous japonica rice (SGJR), Nangeng46 and Nangeng2728, from the Yangtze River Delta (YRD) were investigated. Both Daohuaxiang2 and Nangeng46 achieved high taste values, but there were great differences in starch and protein physicochemical properties. Daohuaxiang2 showed higher apparent amylose content (AAC), lower protein content (PC), and longer amylopectin (especially fb2 and fb3) and amylose chain lengths, resulting in thicker starch lamellae and larger starch granule size. Its cooked rice absorbed more water and expanded to larger sizes. All of these differences created a more compact gel network and harder but more elastic cooked rice for Daohuaxiang2. Nangeng46 produced a lower AAC, a higher PC, shorter amylopectin and amylose chain lengths, thinner starch lamellae, and smaller starch granule sizes, creating a looser gel network and softer cooked rice. The two SGJR, Nangeng46 and Nangeng2728, had similar low AACs but great differences in taste values. The better-tasting Nangeng46 had a lower PC (especially glutelin content) and higher proportion of amylopectin fa chains, which likely reduced the hardness, improved the appearance, and increased the adhesiveness of its cooked rice. Overall, both types of japonica rice from the NR and YRD could potentially have good eating qualities where Nangeng46's cooked rice was comparable to that of Daohuaxiang2 because of its lower AC. Moreover, its lower PC and higher proportion of amylopectin fa chains likely improved its eating quality over the inferior-tasting SGJR, Nangeng2728. This research lays a foundation for the improvement of the taste of japonica rice in rice breeding.

9.
ACS Appl Mater Interfaces ; 12(15): 17466-17473, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32212677

RESUMO

Layered germanium phosphide (GeP), a recently developed two-dimensional material, promises highly attractive theoretical capacity for use as a lithium-ion battery anode. Here, we comprehensively investigate its electrochemical performance and the modification mechanism. GeP flakes demonstrate large initial discharge/charge capacity and high initial Coulombic efficiency. However, the cycling performance is disappointing in the potential window of 0.001-3 V in which capacity retention is only ∼18% after 100 cycles. In situ transmission electron microscopy reveals that the poor cycling behavior results in the unexpected large volume change induced by complex reaction processes in cycles. Serious cracking and fracture appear clearly on the electrode surface after cycling. Narrowing the working voltage window to 0.001-0.85 V, cycling stability will be greatly enhanced, with 75% capacity retaining after 100 cycles and ∼50% left after 350 cycles due to the absence of the dealloying of Li3P in the narrowed working voltage window. Additionally, the electric contact among the electrode components has been enhanced by the alleviation of the electrode volume change in the narrowed working voltage window. Our work provides one effective method to give a deep understanding of the high-energy-density electrode failure and helps to narrow the huge gap between the microstructure and the performance of the electrode.

10.
Nano Lett ; 19(5): 3074-3082, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30951632

RESUMO

Battery materials, which store energy by combining mechanisms of intercalation, conversion, and alloying, provide promisingly high energy density but usually suffer from fast capacity decay due to the drastic volume change upon cycling. Particularly, the significant volume shrinkage upon mass (Li+, Na+, etc.) extraction inevitably leads to the formation of pores in materials and their final pulverization after cycling. It is necessary to explore the failure mechanism of such battery materials from the microscopic level in order to understand the evolution of porous structures. Here, prototyped Sb2Se3 nanowires are targeted to understand the structural failures during repetitive (de)sodiation, which exhibits mainly alloying and conversion mechanisms. The fast growing nanosized pores embedded in the nanowire during desodiation are identified to be the key factor that weakens the mechanical strength of the material and thus cause a rapid capacity decrease. To suppress the pore development, we further limit the cutoff charge voltage in a half-cell against Na below a critical value where the conversion reaction of such a material system is yet happening, the result of which demonstrates significantly improved battery performance with well-maintained structural integrity. These findings may shed some light on electrode failure investigation and rational design of advanced electrode materials with long cycling life.

11.
Chem Commun (Camb) ; 55(39): 5611-5614, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31025670

RESUMO

A hexagonal FeSe nanoparticle anode with a novel reaction mechanism and mechanical stability may fully facilitate the desirable rate capability and cycling performance in sodium-ion batteries. In situ TEM reveals that hexagonal FeSe nanoparticle transition to the Fe and Na2Se phase during sodiation, while the products transform to the tetragonal FeSe phase after desodiation.


Assuntos
Nanopartículas/química , Sódio/química , Espectroscopia Dielétrica , Condutividade Elétrica , Fontes de Energia Elétrica , Ferro/química , Selênio/química
12.
ACS Appl Mater Interfaces ; 10(37): 31271-31279, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30130084

RESUMO

Although various cathode materials have been explored to improve the energy density of lithium-ion batteries, LiCoO2 is still the first choice for 3C consumer electronics due to the high tap density and high volumetric energy density. However, only 0.5 mol of lithium ions can be extracted from LiCoO2 to avoid side reactions and irreversible structure change, which typically occur at high voltage (>4.2 V). To improve the electrochemical performances of the LiCoO2 cathode material at high cut-off voltage and elevated temperature for higher energy density, an in situ formed spinel interfacial coating layer of LiCo xMn2- xO4 is achieved by the reaction of the surface region of the LiCoO2 host. The capacity retention of the modified LiCoO2 cycled at a high voltage of 4.5 V is significantly increased from 15.5 to 82.0% after 300 cycles at room temperature, due to the stable spinel interfacial inhibiting interfacial reactions between LiCoO2 and the electrolyte as confirmed by impedance spectroscopy. We further demonstrated that LiCoO2 with the spinel interfacial layer also exhibits an excellent cycling stability at a high temperature of 45 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...